Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds.
نویسندگان
چکیده
The selection of an appropriate scaffold represents one major key to success in tissue engineering. In cardiovascular applications, where a load-bearing structure is required, scaffolds need to demonstrate sufficient mechanical properties and importantly, reliable retention of these properties during the developmental phase of the tissue engineered construct. The effect of in vitro culture conditions, time and mechanical loading on the retention of mechanical properties of two scaffold types was investigated. First candidate tested was a poly-glycolic acid non-woven fiber mesh, coated with poly-4-hydroxybutyrate (PGA/P4HB), the standard scaffold used successfully in cardiovascular tissue engineering applications. As an alternative, an electrospun poly-epsilon-caprolactone (PCL) scaffold was used. A 15-day dynamic loading protocol was applied to the scaffolds. Additionally, control scaffolds were incubated statically. All studies were performed in a simulated physiological environment (phosphate-buffered saline solution, T=37 degrees C). PGA/P4HB scaffolds showed a dramatic decrease in mechanical properties as a function of incubation time and straining. Mechanical loading had a significant effect on PCL scaffold properties. Degradation as well as fiber fatigue caused by loading promote loss of mechanical properties in PGA/P4HB scaffolds. For PCL, fiber reorganization due to straining seems to be the main reason behind the brittle behavior that was pronounced in these scaffolds. It is suggested that those changes in scaffolds' mechanical properties must be considered at the application of in vitro tissue engineering protocols and should ideally be taken over by tissue formation to maintain mechanically stable tissue constructs.
منابع مشابه
Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation.
Tissue-engineered heart valves (TEHVs), based on polyglycolic acid (PGA) scaffolds coated with poly-4-hydroxybutyrate (P4HB), have shown promising in vivo results in terms of tissue formation. However, a major drawback of these TEHVs is compaction and retraction of the leaflets, causing regurgitation. To overcome this problem, the aim of this study was to investigate: (a) the use of the slowly ...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملOxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants
Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM). Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of...
متن کاملComparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematica...
متن کاملOsteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor
Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2008